(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2) → mark(U11(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
U11(mark(X1), X2) →+ mark(U11(X1, X2))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X1 / mark(X1)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0')) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2) → mark(U11(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(0') → ok(0')
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0')) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2) → mark(U11(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(0') → ok(0')
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
active,
s,
plus,
and,
isNat,
U11,
U21,
proper,
topThey will be analysed ascendingly in the following order:
s < active
plus < active
and < active
isNat < active
U11 < active
U21 < active
active < top
s < proper
plus < proper
and < proper
isNat < proper
U11 < proper
U21 < proper
proper < top
(8) Obligation:
TRS:
Rules:
active(
U11(
tt,
N)) →
mark(
N)
active(
U21(
tt,
M,
N)) →
mark(
s(
plus(
N,
M)))
active(
and(
tt,
X)) →
mark(
X)
active(
isNat(
0')) →
mark(
tt)
active(
isNat(
plus(
V1,
V2))) →
mark(
and(
isNat(
V1),
isNat(
V2)))
active(
isNat(
s(
V1))) →
mark(
isNat(
V1))
active(
plus(
N,
0')) →
mark(
U11(
isNat(
N),
N))
active(
plus(
N,
s(
M))) →
mark(
U21(
and(
isNat(
M),
isNat(
N)),
M,
N))
active(
U11(
X1,
X2)) →
U11(
active(
X1),
X2)
active(
U21(
X1,
X2,
X3)) →
U21(
active(
X1),
X2,
X3)
active(
s(
X)) →
s(
active(
X))
active(
plus(
X1,
X2)) →
plus(
active(
X1),
X2)
active(
plus(
X1,
X2)) →
plus(
X1,
active(
X2))
active(
and(
X1,
X2)) →
and(
active(
X1),
X2)
U11(
mark(
X1),
X2) →
mark(
U11(
X1,
X2))
U21(
mark(
X1),
X2,
X3) →
mark(
U21(
X1,
X2,
X3))
s(
mark(
X)) →
mark(
s(
X))
plus(
mark(
X1),
X2) →
mark(
plus(
X1,
X2))
plus(
X1,
mark(
X2)) →
mark(
plus(
X1,
X2))
and(
mark(
X1),
X2) →
mark(
and(
X1,
X2))
proper(
U11(
X1,
X2)) →
U11(
proper(
X1),
proper(
X2))
proper(
tt) →
ok(
tt)
proper(
U21(
X1,
X2,
X3)) →
U21(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
s(
X)) →
s(
proper(
X))
proper(
plus(
X1,
X2)) →
plus(
proper(
X1),
proper(
X2))
proper(
and(
X1,
X2)) →
and(
proper(
X1),
proper(
X2))
proper(
isNat(
X)) →
isNat(
proper(
X))
proper(
0') →
ok(
0')
U11(
ok(
X1),
ok(
X2)) →
ok(
U11(
X1,
X2))
U21(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
U21(
X1,
X2,
X3))
s(
ok(
X)) →
ok(
s(
X))
plus(
ok(
X1),
ok(
X2)) →
ok(
plus(
X1,
X2))
and(
ok(
X1),
ok(
X2)) →
ok(
and(
X1,
X2))
isNat(
ok(
X)) →
ok(
isNat(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok
Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))
The following defined symbols remain to be analysed:
s, active, plus, and, isNat, U11, U21, proper, top
They will be analysed ascendingly in the following order:
s < active
plus < active
and < active
isNat < active
U11 < active
U21 < active
active < top
s < proper
plus < proper
and < proper
isNat < proper
U11 < proper
U21 < proper
proper < top
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
s(
gen_tt:mark:0':ok3_0(
+(
1,
n5_0))) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
s(gen_tt:mark:0':ok3_0(+(1, 0)))
Induction Step:
s(gen_tt:mark:0':ok3_0(+(1, +(n5_0, 1)))) →RΩ(1)
mark(s(gen_tt:mark:0':ok3_0(+(1, n5_0)))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
active(
U11(
tt,
N)) →
mark(
N)
active(
U21(
tt,
M,
N)) →
mark(
s(
plus(
N,
M)))
active(
and(
tt,
X)) →
mark(
X)
active(
isNat(
0')) →
mark(
tt)
active(
isNat(
plus(
V1,
V2))) →
mark(
and(
isNat(
V1),
isNat(
V2)))
active(
isNat(
s(
V1))) →
mark(
isNat(
V1))
active(
plus(
N,
0')) →
mark(
U11(
isNat(
N),
N))
active(
plus(
N,
s(
M))) →
mark(
U21(
and(
isNat(
M),
isNat(
N)),
M,
N))
active(
U11(
X1,
X2)) →
U11(
active(
X1),
X2)
active(
U21(
X1,
X2,
X3)) →
U21(
active(
X1),
X2,
X3)
active(
s(
X)) →
s(
active(
X))
active(
plus(
X1,
X2)) →
plus(
active(
X1),
X2)
active(
plus(
X1,
X2)) →
plus(
X1,
active(
X2))
active(
and(
X1,
X2)) →
and(
active(
X1),
X2)
U11(
mark(
X1),
X2) →
mark(
U11(
X1,
X2))
U21(
mark(
X1),
X2,
X3) →
mark(
U21(
X1,
X2,
X3))
s(
mark(
X)) →
mark(
s(
X))
plus(
mark(
X1),
X2) →
mark(
plus(
X1,
X2))
plus(
X1,
mark(
X2)) →
mark(
plus(
X1,
X2))
and(
mark(
X1),
X2) →
mark(
and(
X1,
X2))
proper(
U11(
X1,
X2)) →
U11(
proper(
X1),
proper(
X2))
proper(
tt) →
ok(
tt)
proper(
U21(
X1,
X2,
X3)) →
U21(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
s(
X)) →
s(
proper(
X))
proper(
plus(
X1,
X2)) →
plus(
proper(
X1),
proper(
X2))
proper(
and(
X1,
X2)) →
and(
proper(
X1),
proper(
X2))
proper(
isNat(
X)) →
isNat(
proper(
X))
proper(
0') →
ok(
0')
U11(
ok(
X1),
ok(
X2)) →
ok(
U11(
X1,
X2))
U21(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
U21(
X1,
X2,
X3))
s(
ok(
X)) →
ok(
s(
X))
plus(
ok(
X1),
ok(
X2)) →
ok(
plus(
X1,
X2))
and(
ok(
X1),
ok(
X2)) →
ok(
and(
X1,
X2))
isNat(
ok(
X)) →
ok(
isNat(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok
Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))
The following defined symbols remain to be analysed:
plus, active, and, isNat, U11, U21, proper, top
They will be analysed ascendingly in the following order:
plus < active
and < active
isNat < active
U11 < active
U21 < active
active < top
plus < proper
and < proper
isNat < proper
U11 < proper
U21 < proper
proper < top
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_tt:mark:0':ok3_0(
+(
1,
n380_0)),
gen_tt:mark:0':ok3_0(
b)) →
*4_0, rt ∈ Ω(n380
0)
Induction Base:
plus(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b))
Induction Step:
plus(gen_tt:mark:0':ok3_0(+(1, +(n380_0, 1))), gen_tt:mark:0':ok3_0(b)) →RΩ(1)
mark(plus(gen_tt:mark:0':ok3_0(+(1, n380_0)), gen_tt:mark:0':ok3_0(b))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
active(
U11(
tt,
N)) →
mark(
N)
active(
U21(
tt,
M,
N)) →
mark(
s(
plus(
N,
M)))
active(
and(
tt,
X)) →
mark(
X)
active(
isNat(
0')) →
mark(
tt)
active(
isNat(
plus(
V1,
V2))) →
mark(
and(
isNat(
V1),
isNat(
V2)))
active(
isNat(
s(
V1))) →
mark(
isNat(
V1))
active(
plus(
N,
0')) →
mark(
U11(
isNat(
N),
N))
active(
plus(
N,
s(
M))) →
mark(
U21(
and(
isNat(
M),
isNat(
N)),
M,
N))
active(
U11(
X1,
X2)) →
U11(
active(
X1),
X2)
active(
U21(
X1,
X2,
X3)) →
U21(
active(
X1),
X2,
X3)
active(
s(
X)) →
s(
active(
X))
active(
plus(
X1,
X2)) →
plus(
active(
X1),
X2)
active(
plus(
X1,
X2)) →
plus(
X1,
active(
X2))
active(
and(
X1,
X2)) →
and(
active(
X1),
X2)
U11(
mark(
X1),
X2) →
mark(
U11(
X1,
X2))
U21(
mark(
X1),
X2,
X3) →
mark(
U21(
X1,
X2,
X3))
s(
mark(
X)) →
mark(
s(
X))
plus(
mark(
X1),
X2) →
mark(
plus(
X1,
X2))
plus(
X1,
mark(
X2)) →
mark(
plus(
X1,
X2))
and(
mark(
X1),
X2) →
mark(
and(
X1,
X2))
proper(
U11(
X1,
X2)) →
U11(
proper(
X1),
proper(
X2))
proper(
tt) →
ok(
tt)
proper(
U21(
X1,
X2,
X3)) →
U21(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
s(
X)) →
s(
proper(
X))
proper(
plus(
X1,
X2)) →
plus(
proper(
X1),
proper(
X2))
proper(
and(
X1,
X2)) →
and(
proper(
X1),
proper(
X2))
proper(
isNat(
X)) →
isNat(
proper(
X))
proper(
0') →
ok(
0')
U11(
ok(
X1),
ok(
X2)) →
ok(
U11(
X1,
X2))
U21(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
U21(
X1,
X2,
X3))
s(
ok(
X)) →
ok(
s(
X))
plus(
ok(
X1),
ok(
X2)) →
ok(
plus(
X1,
X2))
and(
ok(
X1),
ok(
X2)) →
ok(
and(
X1,
X2))
isNat(
ok(
X)) →
ok(
isNat(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok
Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
plus(gen_tt:mark:0':ok3_0(+(1, n380_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n3800)
Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))
The following defined symbols remain to be analysed:
and, active, isNat, U11, U21, proper, top
They will be analysed ascendingly in the following order:
and < active
isNat < active
U11 < active
U21 < active
active < top
and < proper
isNat < proper
U11 < proper
U21 < proper
proper < top
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
and(
gen_tt:mark:0':ok3_0(
+(
1,
n1754_0)),
gen_tt:mark:0':ok3_0(
b)) →
*4_0, rt ∈ Ω(n1754
0)
Induction Base:
and(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b))
Induction Step:
and(gen_tt:mark:0':ok3_0(+(1, +(n1754_0, 1))), gen_tt:mark:0':ok3_0(b)) →RΩ(1)
mark(and(gen_tt:mark:0':ok3_0(+(1, n1754_0)), gen_tt:mark:0':ok3_0(b))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
active(
U11(
tt,
N)) →
mark(
N)
active(
U21(
tt,
M,
N)) →
mark(
s(
plus(
N,
M)))
active(
and(
tt,
X)) →
mark(
X)
active(
isNat(
0')) →
mark(
tt)
active(
isNat(
plus(
V1,
V2))) →
mark(
and(
isNat(
V1),
isNat(
V2)))
active(
isNat(
s(
V1))) →
mark(
isNat(
V1))
active(
plus(
N,
0')) →
mark(
U11(
isNat(
N),
N))
active(
plus(
N,
s(
M))) →
mark(
U21(
and(
isNat(
M),
isNat(
N)),
M,
N))
active(
U11(
X1,
X2)) →
U11(
active(
X1),
X2)
active(
U21(
X1,
X2,
X3)) →
U21(
active(
X1),
X2,
X3)
active(
s(
X)) →
s(
active(
X))
active(
plus(
X1,
X2)) →
plus(
active(
X1),
X2)
active(
plus(
X1,
X2)) →
plus(
X1,
active(
X2))
active(
and(
X1,
X2)) →
and(
active(
X1),
X2)
U11(
mark(
X1),
X2) →
mark(
U11(
X1,
X2))
U21(
mark(
X1),
X2,
X3) →
mark(
U21(
X1,
X2,
X3))
s(
mark(
X)) →
mark(
s(
X))
plus(
mark(
X1),
X2) →
mark(
plus(
X1,
X2))
plus(
X1,
mark(
X2)) →
mark(
plus(
X1,
X2))
and(
mark(
X1),
X2) →
mark(
and(
X1,
X2))
proper(
U11(
X1,
X2)) →
U11(
proper(
X1),
proper(
X2))
proper(
tt) →
ok(
tt)
proper(
U21(
X1,
X2,
X3)) →
U21(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
s(
X)) →
s(
proper(
X))
proper(
plus(
X1,
X2)) →
plus(
proper(
X1),
proper(
X2))
proper(
and(
X1,
X2)) →
and(
proper(
X1),
proper(
X2))
proper(
isNat(
X)) →
isNat(
proper(
X))
proper(
0') →
ok(
0')
U11(
ok(
X1),
ok(
X2)) →
ok(
U11(
X1,
X2))
U21(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
U21(
X1,
X2,
X3))
s(
ok(
X)) →
ok(
s(
X))
plus(
ok(
X1),
ok(
X2)) →
ok(
plus(
X1,
X2))
and(
ok(
X1),
ok(
X2)) →
ok(
and(
X1,
X2))
isNat(
ok(
X)) →
ok(
isNat(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok
Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
plus(gen_tt:mark:0':ok3_0(+(1, n380_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n3800)
and(gen_tt:mark:0':ok3_0(+(1, n1754_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n17540)
Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))
The following defined symbols remain to be analysed:
isNat, active, U11, U21, proper, top
They will be analysed ascendingly in the following order:
isNat < active
U11 < active
U21 < active
active < top
isNat < proper
U11 < proper
U21 < proper
proper < top
(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol isNat.
(19) Obligation:
TRS:
Rules:
active(
U11(
tt,
N)) →
mark(
N)
active(
U21(
tt,
M,
N)) →
mark(
s(
plus(
N,
M)))
active(
and(
tt,
X)) →
mark(
X)
active(
isNat(
0')) →
mark(
tt)
active(
isNat(
plus(
V1,
V2))) →
mark(
and(
isNat(
V1),
isNat(
V2)))
active(
isNat(
s(
V1))) →
mark(
isNat(
V1))
active(
plus(
N,
0')) →
mark(
U11(
isNat(
N),
N))
active(
plus(
N,
s(
M))) →
mark(
U21(
and(
isNat(
M),
isNat(
N)),
M,
N))
active(
U11(
X1,
X2)) →
U11(
active(
X1),
X2)
active(
U21(
X1,
X2,
X3)) →
U21(
active(
X1),
X2,
X3)
active(
s(
X)) →
s(
active(
X))
active(
plus(
X1,
X2)) →
plus(
active(
X1),
X2)
active(
plus(
X1,
X2)) →
plus(
X1,
active(
X2))
active(
and(
X1,
X2)) →
and(
active(
X1),
X2)
U11(
mark(
X1),
X2) →
mark(
U11(
X1,
X2))
U21(
mark(
X1),
X2,
X3) →
mark(
U21(
X1,
X2,
X3))
s(
mark(
X)) →
mark(
s(
X))
plus(
mark(
X1),
X2) →
mark(
plus(
X1,
X2))
plus(
X1,
mark(
X2)) →
mark(
plus(
X1,
X2))
and(
mark(
X1),
X2) →
mark(
and(
X1,
X2))
proper(
U11(
X1,
X2)) →
U11(
proper(
X1),
proper(
X2))
proper(
tt) →
ok(
tt)
proper(
U21(
X1,
X2,
X3)) →
U21(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
s(
X)) →
s(
proper(
X))
proper(
plus(
X1,
X2)) →
plus(
proper(
X1),
proper(
X2))
proper(
and(
X1,
X2)) →
and(
proper(
X1),
proper(
X2))
proper(
isNat(
X)) →
isNat(
proper(
X))
proper(
0') →
ok(
0')
U11(
ok(
X1),
ok(
X2)) →
ok(
U11(
X1,
X2))
U21(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
U21(
X1,
X2,
X3))
s(
ok(
X)) →
ok(
s(
X))
plus(
ok(
X1),
ok(
X2)) →
ok(
plus(
X1,
X2))
and(
ok(
X1),
ok(
X2)) →
ok(
and(
X1,
X2))
isNat(
ok(
X)) →
ok(
isNat(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok
Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
plus(gen_tt:mark:0':ok3_0(+(1, n380_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n3800)
and(gen_tt:mark:0':ok3_0(+(1, n1754_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n17540)
Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))
The following defined symbols remain to be analysed:
U11, active, U21, proper, top
They will be analysed ascendingly in the following order:
U11 < active
U21 < active
active < top
U11 < proper
U21 < proper
proper < top
(20) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
U11(
gen_tt:mark:0':ok3_0(
+(
1,
n3250_0)),
gen_tt:mark:0':ok3_0(
b)) →
*4_0, rt ∈ Ω(n3250
0)
Induction Base:
U11(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b))
Induction Step:
U11(gen_tt:mark:0':ok3_0(+(1, +(n3250_0, 1))), gen_tt:mark:0':ok3_0(b)) →RΩ(1)
mark(U11(gen_tt:mark:0':ok3_0(+(1, n3250_0)), gen_tt:mark:0':ok3_0(b))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(21) Complex Obligation (BEST)
(22) Obligation:
TRS:
Rules:
active(
U11(
tt,
N)) →
mark(
N)
active(
U21(
tt,
M,
N)) →
mark(
s(
plus(
N,
M)))
active(
and(
tt,
X)) →
mark(
X)
active(
isNat(
0')) →
mark(
tt)
active(
isNat(
plus(
V1,
V2))) →
mark(
and(
isNat(
V1),
isNat(
V2)))
active(
isNat(
s(
V1))) →
mark(
isNat(
V1))
active(
plus(
N,
0')) →
mark(
U11(
isNat(
N),
N))
active(
plus(
N,
s(
M))) →
mark(
U21(
and(
isNat(
M),
isNat(
N)),
M,
N))
active(
U11(
X1,
X2)) →
U11(
active(
X1),
X2)
active(
U21(
X1,
X2,
X3)) →
U21(
active(
X1),
X2,
X3)
active(
s(
X)) →
s(
active(
X))
active(
plus(
X1,
X2)) →
plus(
active(
X1),
X2)
active(
plus(
X1,
X2)) →
plus(
X1,
active(
X2))
active(
and(
X1,
X2)) →
and(
active(
X1),
X2)
U11(
mark(
X1),
X2) →
mark(
U11(
X1,
X2))
U21(
mark(
X1),
X2,
X3) →
mark(
U21(
X1,
X2,
X3))
s(
mark(
X)) →
mark(
s(
X))
plus(
mark(
X1),
X2) →
mark(
plus(
X1,
X2))
plus(
X1,
mark(
X2)) →
mark(
plus(
X1,
X2))
and(
mark(
X1),
X2) →
mark(
and(
X1,
X2))
proper(
U11(
X1,
X2)) →
U11(
proper(
X1),
proper(
X2))
proper(
tt) →
ok(
tt)
proper(
U21(
X1,
X2,
X3)) →
U21(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
s(
X)) →
s(
proper(
X))
proper(
plus(
X1,
X2)) →
plus(
proper(
X1),
proper(
X2))
proper(
and(
X1,
X2)) →
and(
proper(
X1),
proper(
X2))
proper(
isNat(
X)) →
isNat(
proper(
X))
proper(
0') →
ok(
0')
U11(
ok(
X1),
ok(
X2)) →
ok(
U11(
X1,
X2))
U21(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
U21(
X1,
X2,
X3))
s(
ok(
X)) →
ok(
s(
X))
plus(
ok(
X1),
ok(
X2)) →
ok(
plus(
X1,
X2))
and(
ok(
X1),
ok(
X2)) →
ok(
and(
X1,
X2))
isNat(
ok(
X)) →
ok(
isNat(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok
Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
plus(gen_tt:mark:0':ok3_0(+(1, n380_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n3800)
and(gen_tt:mark:0':ok3_0(+(1, n1754_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n17540)
U11(gen_tt:mark:0':ok3_0(+(1, n3250_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n32500)
Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))
The following defined symbols remain to be analysed:
U21, active, proper, top
They will be analysed ascendingly in the following order:
U21 < active
active < top
U21 < proper
proper < top
(23) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
U21(
gen_tt:mark:0':ok3_0(
+(
1,
n5033_0)),
gen_tt:mark:0':ok3_0(
b),
gen_tt:mark:0':ok3_0(
c)) →
*4_0, rt ∈ Ω(n5033
0)
Induction Base:
U21(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c))
Induction Step:
U21(gen_tt:mark:0':ok3_0(+(1, +(n5033_0, 1))), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) →RΩ(1)
mark(U21(gen_tt:mark:0':ok3_0(+(1, n5033_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(24) Complex Obligation (BEST)
(25) Obligation:
TRS:
Rules:
active(
U11(
tt,
N)) →
mark(
N)
active(
U21(
tt,
M,
N)) →
mark(
s(
plus(
N,
M)))
active(
and(
tt,
X)) →
mark(
X)
active(
isNat(
0')) →
mark(
tt)
active(
isNat(
plus(
V1,
V2))) →
mark(
and(
isNat(
V1),
isNat(
V2)))
active(
isNat(
s(
V1))) →
mark(
isNat(
V1))
active(
plus(
N,
0')) →
mark(
U11(
isNat(
N),
N))
active(
plus(
N,
s(
M))) →
mark(
U21(
and(
isNat(
M),
isNat(
N)),
M,
N))
active(
U11(
X1,
X2)) →
U11(
active(
X1),
X2)
active(
U21(
X1,
X2,
X3)) →
U21(
active(
X1),
X2,
X3)
active(
s(
X)) →
s(
active(
X))
active(
plus(
X1,
X2)) →
plus(
active(
X1),
X2)
active(
plus(
X1,
X2)) →
plus(
X1,
active(
X2))
active(
and(
X1,
X2)) →
and(
active(
X1),
X2)
U11(
mark(
X1),
X2) →
mark(
U11(
X1,
X2))
U21(
mark(
X1),
X2,
X3) →
mark(
U21(
X1,
X2,
X3))
s(
mark(
X)) →
mark(
s(
X))
plus(
mark(
X1),
X2) →
mark(
plus(
X1,
X2))
plus(
X1,
mark(
X2)) →
mark(
plus(
X1,
X2))
and(
mark(
X1),
X2) →
mark(
and(
X1,
X2))
proper(
U11(
X1,
X2)) →
U11(
proper(
X1),
proper(
X2))
proper(
tt) →
ok(
tt)
proper(
U21(
X1,
X2,
X3)) →
U21(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
s(
X)) →
s(
proper(
X))
proper(
plus(
X1,
X2)) →
plus(
proper(
X1),
proper(
X2))
proper(
and(
X1,
X2)) →
and(
proper(
X1),
proper(
X2))
proper(
isNat(
X)) →
isNat(
proper(
X))
proper(
0') →
ok(
0')
U11(
ok(
X1),
ok(
X2)) →
ok(
U11(
X1,
X2))
U21(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
U21(
X1,
X2,
X3))
s(
ok(
X)) →
ok(
s(
X))
plus(
ok(
X1),
ok(
X2)) →
ok(
plus(
X1,
X2))
and(
ok(
X1),
ok(
X2)) →
ok(
and(
X1,
X2))
isNat(
ok(
X)) →
ok(
isNat(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok
Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
plus(gen_tt:mark:0':ok3_0(+(1, n380_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n3800)
and(gen_tt:mark:0':ok3_0(+(1, n1754_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n17540)
U11(gen_tt:mark:0':ok3_0(+(1, n3250_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n32500)
U21(gen_tt:mark:0':ok3_0(+(1, n5033_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50330)
Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))
The following defined symbols remain to be analysed:
active, proper, top
They will be analysed ascendingly in the following order:
active < top
proper < top
(26) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol active.
(27) Obligation:
TRS:
Rules:
active(
U11(
tt,
N)) →
mark(
N)
active(
U21(
tt,
M,
N)) →
mark(
s(
plus(
N,
M)))
active(
and(
tt,
X)) →
mark(
X)
active(
isNat(
0')) →
mark(
tt)
active(
isNat(
plus(
V1,
V2))) →
mark(
and(
isNat(
V1),
isNat(
V2)))
active(
isNat(
s(
V1))) →
mark(
isNat(
V1))
active(
plus(
N,
0')) →
mark(
U11(
isNat(
N),
N))
active(
plus(
N,
s(
M))) →
mark(
U21(
and(
isNat(
M),
isNat(
N)),
M,
N))
active(
U11(
X1,
X2)) →
U11(
active(
X1),
X2)
active(
U21(
X1,
X2,
X3)) →
U21(
active(
X1),
X2,
X3)
active(
s(
X)) →
s(
active(
X))
active(
plus(
X1,
X2)) →
plus(
active(
X1),
X2)
active(
plus(
X1,
X2)) →
plus(
X1,
active(
X2))
active(
and(
X1,
X2)) →
and(
active(
X1),
X2)
U11(
mark(
X1),
X2) →
mark(
U11(
X1,
X2))
U21(
mark(
X1),
X2,
X3) →
mark(
U21(
X1,
X2,
X3))
s(
mark(
X)) →
mark(
s(
X))
plus(
mark(
X1),
X2) →
mark(
plus(
X1,
X2))
plus(
X1,
mark(
X2)) →
mark(
plus(
X1,
X2))
and(
mark(
X1),
X2) →
mark(
and(
X1,
X2))
proper(
U11(
X1,
X2)) →
U11(
proper(
X1),
proper(
X2))
proper(
tt) →
ok(
tt)
proper(
U21(
X1,
X2,
X3)) →
U21(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
s(
X)) →
s(
proper(
X))
proper(
plus(
X1,
X2)) →
plus(
proper(
X1),
proper(
X2))
proper(
and(
X1,
X2)) →
and(
proper(
X1),
proper(
X2))
proper(
isNat(
X)) →
isNat(
proper(
X))
proper(
0') →
ok(
0')
U11(
ok(
X1),
ok(
X2)) →
ok(
U11(
X1,
X2))
U21(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
U21(
X1,
X2,
X3))
s(
ok(
X)) →
ok(
s(
X))
plus(
ok(
X1),
ok(
X2)) →
ok(
plus(
X1,
X2))
and(
ok(
X1),
ok(
X2)) →
ok(
and(
X1,
X2))
isNat(
ok(
X)) →
ok(
isNat(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok
Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
plus(gen_tt:mark:0':ok3_0(+(1, n380_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n3800)
and(gen_tt:mark:0':ok3_0(+(1, n1754_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n17540)
U11(gen_tt:mark:0':ok3_0(+(1, n3250_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n32500)
U21(gen_tt:mark:0':ok3_0(+(1, n5033_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50330)
Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))
The following defined symbols remain to be analysed:
proper, top
They will be analysed ascendingly in the following order:
proper < top
(28) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol proper.
(29) Obligation:
TRS:
Rules:
active(
U11(
tt,
N)) →
mark(
N)
active(
U21(
tt,
M,
N)) →
mark(
s(
plus(
N,
M)))
active(
and(
tt,
X)) →
mark(
X)
active(
isNat(
0')) →
mark(
tt)
active(
isNat(
plus(
V1,
V2))) →
mark(
and(
isNat(
V1),
isNat(
V2)))
active(
isNat(
s(
V1))) →
mark(
isNat(
V1))
active(
plus(
N,
0')) →
mark(
U11(
isNat(
N),
N))
active(
plus(
N,
s(
M))) →
mark(
U21(
and(
isNat(
M),
isNat(
N)),
M,
N))
active(
U11(
X1,
X2)) →
U11(
active(
X1),
X2)
active(
U21(
X1,
X2,
X3)) →
U21(
active(
X1),
X2,
X3)
active(
s(
X)) →
s(
active(
X))
active(
plus(
X1,
X2)) →
plus(
active(
X1),
X2)
active(
plus(
X1,
X2)) →
plus(
X1,
active(
X2))
active(
and(
X1,
X2)) →
and(
active(
X1),
X2)
U11(
mark(
X1),
X2) →
mark(
U11(
X1,
X2))
U21(
mark(
X1),
X2,
X3) →
mark(
U21(
X1,
X2,
X3))
s(
mark(
X)) →
mark(
s(
X))
plus(
mark(
X1),
X2) →
mark(
plus(
X1,
X2))
plus(
X1,
mark(
X2)) →
mark(
plus(
X1,
X2))
and(
mark(
X1),
X2) →
mark(
and(
X1,
X2))
proper(
U11(
X1,
X2)) →
U11(
proper(
X1),
proper(
X2))
proper(
tt) →
ok(
tt)
proper(
U21(
X1,
X2,
X3)) →
U21(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
s(
X)) →
s(
proper(
X))
proper(
plus(
X1,
X2)) →
plus(
proper(
X1),
proper(
X2))
proper(
and(
X1,
X2)) →
and(
proper(
X1),
proper(
X2))
proper(
isNat(
X)) →
isNat(
proper(
X))
proper(
0') →
ok(
0')
U11(
ok(
X1),
ok(
X2)) →
ok(
U11(
X1,
X2))
U21(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
U21(
X1,
X2,
X3))
s(
ok(
X)) →
ok(
s(
X))
plus(
ok(
X1),
ok(
X2)) →
ok(
plus(
X1,
X2))
and(
ok(
X1),
ok(
X2)) →
ok(
and(
X1,
X2))
isNat(
ok(
X)) →
ok(
isNat(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok
Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
plus(gen_tt:mark:0':ok3_0(+(1, n380_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n3800)
and(gen_tt:mark:0':ok3_0(+(1, n1754_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n17540)
U11(gen_tt:mark:0':ok3_0(+(1, n3250_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n32500)
U21(gen_tt:mark:0':ok3_0(+(1, n5033_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50330)
Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))
The following defined symbols remain to be analysed:
top
(30) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol top.
(31) Obligation:
TRS:
Rules:
active(
U11(
tt,
N)) →
mark(
N)
active(
U21(
tt,
M,
N)) →
mark(
s(
plus(
N,
M)))
active(
and(
tt,
X)) →
mark(
X)
active(
isNat(
0')) →
mark(
tt)
active(
isNat(
plus(
V1,
V2))) →
mark(
and(
isNat(
V1),
isNat(
V2)))
active(
isNat(
s(
V1))) →
mark(
isNat(
V1))
active(
plus(
N,
0')) →
mark(
U11(
isNat(
N),
N))
active(
plus(
N,
s(
M))) →
mark(
U21(
and(
isNat(
M),
isNat(
N)),
M,
N))
active(
U11(
X1,
X2)) →
U11(
active(
X1),
X2)
active(
U21(
X1,
X2,
X3)) →
U21(
active(
X1),
X2,
X3)
active(
s(
X)) →
s(
active(
X))
active(
plus(
X1,
X2)) →
plus(
active(
X1),
X2)
active(
plus(
X1,
X2)) →
plus(
X1,
active(
X2))
active(
and(
X1,
X2)) →
and(
active(
X1),
X2)
U11(
mark(
X1),
X2) →
mark(
U11(
X1,
X2))
U21(
mark(
X1),
X2,
X3) →
mark(
U21(
X1,
X2,
X3))
s(
mark(
X)) →
mark(
s(
X))
plus(
mark(
X1),
X2) →
mark(
plus(
X1,
X2))
plus(
X1,
mark(
X2)) →
mark(
plus(
X1,
X2))
and(
mark(
X1),
X2) →
mark(
and(
X1,
X2))
proper(
U11(
X1,
X2)) →
U11(
proper(
X1),
proper(
X2))
proper(
tt) →
ok(
tt)
proper(
U21(
X1,
X2,
X3)) →
U21(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
s(
X)) →
s(
proper(
X))
proper(
plus(
X1,
X2)) →
plus(
proper(
X1),
proper(
X2))
proper(
and(
X1,
X2)) →
and(
proper(
X1),
proper(
X2))
proper(
isNat(
X)) →
isNat(
proper(
X))
proper(
0') →
ok(
0')
U11(
ok(
X1),
ok(
X2)) →
ok(
U11(
X1,
X2))
U21(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
U21(
X1,
X2,
X3))
s(
ok(
X)) →
ok(
s(
X))
plus(
ok(
X1),
ok(
X2)) →
ok(
plus(
X1,
X2))
and(
ok(
X1),
ok(
X2)) →
ok(
and(
X1,
X2))
isNat(
ok(
X)) →
ok(
isNat(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok
Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
plus(gen_tt:mark:0':ok3_0(+(1, n380_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n3800)
and(gen_tt:mark:0':ok3_0(+(1, n1754_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n17540)
U11(gen_tt:mark:0':ok3_0(+(1, n3250_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n32500)
U21(gen_tt:mark:0':ok3_0(+(1, n5033_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50330)
Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))
No more defined symbols left to analyse.
(32) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(33) BOUNDS(n^1, INF)
(34) Obligation:
TRS:
Rules:
active(
U11(
tt,
N)) →
mark(
N)
active(
U21(
tt,
M,
N)) →
mark(
s(
plus(
N,
M)))
active(
and(
tt,
X)) →
mark(
X)
active(
isNat(
0')) →
mark(
tt)
active(
isNat(
plus(
V1,
V2))) →
mark(
and(
isNat(
V1),
isNat(
V2)))
active(
isNat(
s(
V1))) →
mark(
isNat(
V1))
active(
plus(
N,
0')) →
mark(
U11(
isNat(
N),
N))
active(
plus(
N,
s(
M))) →
mark(
U21(
and(
isNat(
M),
isNat(
N)),
M,
N))
active(
U11(
X1,
X2)) →
U11(
active(
X1),
X2)
active(
U21(
X1,
X2,
X3)) →
U21(
active(
X1),
X2,
X3)
active(
s(
X)) →
s(
active(
X))
active(
plus(
X1,
X2)) →
plus(
active(
X1),
X2)
active(
plus(
X1,
X2)) →
plus(
X1,
active(
X2))
active(
and(
X1,
X2)) →
and(
active(
X1),
X2)
U11(
mark(
X1),
X2) →
mark(
U11(
X1,
X2))
U21(
mark(
X1),
X2,
X3) →
mark(
U21(
X1,
X2,
X3))
s(
mark(
X)) →
mark(
s(
X))
plus(
mark(
X1),
X2) →
mark(
plus(
X1,
X2))
plus(
X1,
mark(
X2)) →
mark(
plus(
X1,
X2))
and(
mark(
X1),
X2) →
mark(
and(
X1,
X2))
proper(
U11(
X1,
X2)) →
U11(
proper(
X1),
proper(
X2))
proper(
tt) →
ok(
tt)
proper(
U21(
X1,
X2,
X3)) →
U21(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
s(
X)) →
s(
proper(
X))
proper(
plus(
X1,
X2)) →
plus(
proper(
X1),
proper(
X2))
proper(
and(
X1,
X2)) →
and(
proper(
X1),
proper(
X2))
proper(
isNat(
X)) →
isNat(
proper(
X))
proper(
0') →
ok(
0')
U11(
ok(
X1),
ok(
X2)) →
ok(
U11(
X1,
X2))
U21(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
U21(
X1,
X2,
X3))
s(
ok(
X)) →
ok(
s(
X))
plus(
ok(
X1),
ok(
X2)) →
ok(
plus(
X1,
X2))
and(
ok(
X1),
ok(
X2)) →
ok(
and(
X1,
X2))
isNat(
ok(
X)) →
ok(
isNat(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok
Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
plus(gen_tt:mark:0':ok3_0(+(1, n380_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n3800)
and(gen_tt:mark:0':ok3_0(+(1, n1754_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n17540)
U11(gen_tt:mark:0':ok3_0(+(1, n3250_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n32500)
U21(gen_tt:mark:0':ok3_0(+(1, n5033_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) → *4_0, rt ∈ Ω(n50330)
Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))
No more defined symbols left to analyse.
(35) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(36) BOUNDS(n^1, INF)
(37) Obligation:
TRS:
Rules:
active(
U11(
tt,
N)) →
mark(
N)
active(
U21(
tt,
M,
N)) →
mark(
s(
plus(
N,
M)))
active(
and(
tt,
X)) →
mark(
X)
active(
isNat(
0')) →
mark(
tt)
active(
isNat(
plus(
V1,
V2))) →
mark(
and(
isNat(
V1),
isNat(
V2)))
active(
isNat(
s(
V1))) →
mark(
isNat(
V1))
active(
plus(
N,
0')) →
mark(
U11(
isNat(
N),
N))
active(
plus(
N,
s(
M))) →
mark(
U21(
and(
isNat(
M),
isNat(
N)),
M,
N))
active(
U11(
X1,
X2)) →
U11(
active(
X1),
X2)
active(
U21(
X1,
X2,
X3)) →
U21(
active(
X1),
X2,
X3)
active(
s(
X)) →
s(
active(
X))
active(
plus(
X1,
X2)) →
plus(
active(
X1),
X2)
active(
plus(
X1,
X2)) →
plus(
X1,
active(
X2))
active(
and(
X1,
X2)) →
and(
active(
X1),
X2)
U11(
mark(
X1),
X2) →
mark(
U11(
X1,
X2))
U21(
mark(
X1),
X2,
X3) →
mark(
U21(
X1,
X2,
X3))
s(
mark(
X)) →
mark(
s(
X))
plus(
mark(
X1),
X2) →
mark(
plus(
X1,
X2))
plus(
X1,
mark(
X2)) →
mark(
plus(
X1,
X2))
and(
mark(
X1),
X2) →
mark(
and(
X1,
X2))
proper(
U11(
X1,
X2)) →
U11(
proper(
X1),
proper(
X2))
proper(
tt) →
ok(
tt)
proper(
U21(
X1,
X2,
X3)) →
U21(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
s(
X)) →
s(
proper(
X))
proper(
plus(
X1,
X2)) →
plus(
proper(
X1),
proper(
X2))
proper(
and(
X1,
X2)) →
and(
proper(
X1),
proper(
X2))
proper(
isNat(
X)) →
isNat(
proper(
X))
proper(
0') →
ok(
0')
U11(
ok(
X1),
ok(
X2)) →
ok(
U11(
X1,
X2))
U21(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
U21(
X1,
X2,
X3))
s(
ok(
X)) →
ok(
s(
X))
plus(
ok(
X1),
ok(
X2)) →
ok(
plus(
X1,
X2))
and(
ok(
X1),
ok(
X2)) →
ok(
and(
X1,
X2))
isNat(
ok(
X)) →
ok(
isNat(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok
Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
plus(gen_tt:mark:0':ok3_0(+(1, n380_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n3800)
and(gen_tt:mark:0':ok3_0(+(1, n1754_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n17540)
U11(gen_tt:mark:0':ok3_0(+(1, n3250_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n32500)
Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))
No more defined symbols left to analyse.
(38) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(39) BOUNDS(n^1, INF)
(40) Obligation:
TRS:
Rules:
active(
U11(
tt,
N)) →
mark(
N)
active(
U21(
tt,
M,
N)) →
mark(
s(
plus(
N,
M)))
active(
and(
tt,
X)) →
mark(
X)
active(
isNat(
0')) →
mark(
tt)
active(
isNat(
plus(
V1,
V2))) →
mark(
and(
isNat(
V1),
isNat(
V2)))
active(
isNat(
s(
V1))) →
mark(
isNat(
V1))
active(
plus(
N,
0')) →
mark(
U11(
isNat(
N),
N))
active(
plus(
N,
s(
M))) →
mark(
U21(
and(
isNat(
M),
isNat(
N)),
M,
N))
active(
U11(
X1,
X2)) →
U11(
active(
X1),
X2)
active(
U21(
X1,
X2,
X3)) →
U21(
active(
X1),
X2,
X3)
active(
s(
X)) →
s(
active(
X))
active(
plus(
X1,
X2)) →
plus(
active(
X1),
X2)
active(
plus(
X1,
X2)) →
plus(
X1,
active(
X2))
active(
and(
X1,
X2)) →
and(
active(
X1),
X2)
U11(
mark(
X1),
X2) →
mark(
U11(
X1,
X2))
U21(
mark(
X1),
X2,
X3) →
mark(
U21(
X1,
X2,
X3))
s(
mark(
X)) →
mark(
s(
X))
plus(
mark(
X1),
X2) →
mark(
plus(
X1,
X2))
plus(
X1,
mark(
X2)) →
mark(
plus(
X1,
X2))
and(
mark(
X1),
X2) →
mark(
and(
X1,
X2))
proper(
U11(
X1,
X2)) →
U11(
proper(
X1),
proper(
X2))
proper(
tt) →
ok(
tt)
proper(
U21(
X1,
X2,
X3)) →
U21(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
s(
X)) →
s(
proper(
X))
proper(
plus(
X1,
X2)) →
plus(
proper(
X1),
proper(
X2))
proper(
and(
X1,
X2)) →
and(
proper(
X1),
proper(
X2))
proper(
isNat(
X)) →
isNat(
proper(
X))
proper(
0') →
ok(
0')
U11(
ok(
X1),
ok(
X2)) →
ok(
U11(
X1,
X2))
U21(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
U21(
X1,
X2,
X3))
s(
ok(
X)) →
ok(
s(
X))
plus(
ok(
X1),
ok(
X2)) →
ok(
plus(
X1,
X2))
and(
ok(
X1),
ok(
X2)) →
ok(
and(
X1,
X2))
isNat(
ok(
X)) →
ok(
isNat(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok
Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
plus(gen_tt:mark:0':ok3_0(+(1, n380_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n3800)
and(gen_tt:mark:0':ok3_0(+(1, n1754_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n17540)
Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))
No more defined symbols left to analyse.
(41) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(42) BOUNDS(n^1, INF)
(43) Obligation:
TRS:
Rules:
active(
U11(
tt,
N)) →
mark(
N)
active(
U21(
tt,
M,
N)) →
mark(
s(
plus(
N,
M)))
active(
and(
tt,
X)) →
mark(
X)
active(
isNat(
0')) →
mark(
tt)
active(
isNat(
plus(
V1,
V2))) →
mark(
and(
isNat(
V1),
isNat(
V2)))
active(
isNat(
s(
V1))) →
mark(
isNat(
V1))
active(
plus(
N,
0')) →
mark(
U11(
isNat(
N),
N))
active(
plus(
N,
s(
M))) →
mark(
U21(
and(
isNat(
M),
isNat(
N)),
M,
N))
active(
U11(
X1,
X2)) →
U11(
active(
X1),
X2)
active(
U21(
X1,
X2,
X3)) →
U21(
active(
X1),
X2,
X3)
active(
s(
X)) →
s(
active(
X))
active(
plus(
X1,
X2)) →
plus(
active(
X1),
X2)
active(
plus(
X1,
X2)) →
plus(
X1,
active(
X2))
active(
and(
X1,
X2)) →
and(
active(
X1),
X2)
U11(
mark(
X1),
X2) →
mark(
U11(
X1,
X2))
U21(
mark(
X1),
X2,
X3) →
mark(
U21(
X1,
X2,
X3))
s(
mark(
X)) →
mark(
s(
X))
plus(
mark(
X1),
X2) →
mark(
plus(
X1,
X2))
plus(
X1,
mark(
X2)) →
mark(
plus(
X1,
X2))
and(
mark(
X1),
X2) →
mark(
and(
X1,
X2))
proper(
U11(
X1,
X2)) →
U11(
proper(
X1),
proper(
X2))
proper(
tt) →
ok(
tt)
proper(
U21(
X1,
X2,
X3)) →
U21(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
s(
X)) →
s(
proper(
X))
proper(
plus(
X1,
X2)) →
plus(
proper(
X1),
proper(
X2))
proper(
and(
X1,
X2)) →
and(
proper(
X1),
proper(
X2))
proper(
isNat(
X)) →
isNat(
proper(
X))
proper(
0') →
ok(
0')
U11(
ok(
X1),
ok(
X2)) →
ok(
U11(
X1,
X2))
U21(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
U21(
X1,
X2,
X3))
s(
ok(
X)) →
ok(
s(
X))
plus(
ok(
X1),
ok(
X2)) →
ok(
plus(
X1,
X2))
and(
ok(
X1),
ok(
X2)) →
ok(
and(
X1,
X2))
isNat(
ok(
X)) →
ok(
isNat(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok
Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
plus(gen_tt:mark:0':ok3_0(+(1, n380_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n3800)
Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))
No more defined symbols left to analyse.
(44) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(45) BOUNDS(n^1, INF)
(46) Obligation:
TRS:
Rules:
active(
U11(
tt,
N)) →
mark(
N)
active(
U21(
tt,
M,
N)) →
mark(
s(
plus(
N,
M)))
active(
and(
tt,
X)) →
mark(
X)
active(
isNat(
0')) →
mark(
tt)
active(
isNat(
plus(
V1,
V2))) →
mark(
and(
isNat(
V1),
isNat(
V2)))
active(
isNat(
s(
V1))) →
mark(
isNat(
V1))
active(
plus(
N,
0')) →
mark(
U11(
isNat(
N),
N))
active(
plus(
N,
s(
M))) →
mark(
U21(
and(
isNat(
M),
isNat(
N)),
M,
N))
active(
U11(
X1,
X2)) →
U11(
active(
X1),
X2)
active(
U21(
X1,
X2,
X3)) →
U21(
active(
X1),
X2,
X3)
active(
s(
X)) →
s(
active(
X))
active(
plus(
X1,
X2)) →
plus(
active(
X1),
X2)
active(
plus(
X1,
X2)) →
plus(
X1,
active(
X2))
active(
and(
X1,
X2)) →
and(
active(
X1),
X2)
U11(
mark(
X1),
X2) →
mark(
U11(
X1,
X2))
U21(
mark(
X1),
X2,
X3) →
mark(
U21(
X1,
X2,
X3))
s(
mark(
X)) →
mark(
s(
X))
plus(
mark(
X1),
X2) →
mark(
plus(
X1,
X2))
plus(
X1,
mark(
X2)) →
mark(
plus(
X1,
X2))
and(
mark(
X1),
X2) →
mark(
and(
X1,
X2))
proper(
U11(
X1,
X2)) →
U11(
proper(
X1),
proper(
X2))
proper(
tt) →
ok(
tt)
proper(
U21(
X1,
X2,
X3)) →
U21(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
s(
X)) →
s(
proper(
X))
proper(
plus(
X1,
X2)) →
plus(
proper(
X1),
proper(
X2))
proper(
and(
X1,
X2)) →
and(
proper(
X1),
proper(
X2))
proper(
isNat(
X)) →
isNat(
proper(
X))
proper(
0') →
ok(
0')
U11(
ok(
X1),
ok(
X2)) →
ok(
U11(
X1,
X2))
U21(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
U21(
X1,
X2,
X3))
s(
ok(
X)) →
ok(
s(
X))
plus(
ok(
X1),
ok(
X2)) →
ok(
plus(
X1,
X2))
and(
ok(
X1),
ok(
X2)) →
ok(
and(
X1,
X2))
isNat(
ok(
X)) →
ok(
isNat(
X))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: tt:mark:0':ok → tt:mark:0':ok
U11 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
U21 :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
isNat :: tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok
Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))
No more defined symbols left to analyse.
(47) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(48) BOUNDS(n^1, INF)